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Abstract Urea and creatinine are commonly used as bio-
markers of renal function. Abnormal concentrations of these
biomarkers are indicative of pathological processes such as re-
nal failure. This study aimed to develop a model based on
Raman spectroscopy to estimate the concentration values of
urea and creatinine in human serum. Blood sera from 55 clini-
cally normal subjects and 47 patients with chronic kidney dis-
ease undergoing dialysis were collected, and concentrations of
urea and creatinine were determined by spectrophotometric
methods. A Raman spectrum was obtained with a high-
resolution dispersive Raman spectrometer (830 nm). A spectral
modelwasdevelopedbasedonpartial least squares (PLS),where
theconcentrationsofurea andcreatininewerecorrelatedwith the
Raman features. Principal components analysis (PCA)was used
to discriminate dialysis patients from normal subjects. The PLS
model showed r=0.97 and r=0.93 for urea and creatinine, re-
spectively. The root mean square errors of cross-validation
(RMSECV)for themodelwere17.6and1.94mg/dL, respective-
ly. PCA showed high discrimination between dialysis and

normality (95 % accuracy). The Raman technique was able to
determine the concentrations with low error and to discriminate
dialysis from normal subjects, consistent with a rapid and low-
cost test.

Keywords Raman spectroscopy . Urea . Creatinine . Human
serum . Partial least squares (PLS) . Principal components
analysis (PCA)

Introduction

The kidneys are responsible for various important functions
such as endocrine, metabolic, resorption, homeostasis, and
blood filtration, secretingmetabolic waste products and excess
fluidsasurine.Theprimary functionof thekidney is tomaintain
homeostasis by regulating the amount of body water, control-
ling the blood concentration of chemical elements such as po-
tassium, sodium, calcium, and phosphorus and eliminating
drugs and toxins, in addition to the secretion of hormones [1].

The failure of renal function may affect important organs
such as the heart, liver, and pancreas,making themfunctionally
impaired [2, 3]. Physiological conditions that contribute to im-
paired renal function in risk groups include systemic arterial
hypertension (AH), which affects more than 75 % of risk pa-
tients at any age, diabetes mellitus (DM) with a high risk of
chronic kidneydisease (CKD), a physiological decrease in glo-
merular filtration rate (GFR), a common renal alteration in the
elderly, patients with cardiovascular disease, and/or parents of
patients with CKD [4, 5]. Nowadays, there are few population-
based studies to detect changes in renal function in the early
stages and the detection of these changes is restricted, almost
exclusively, to the more advanced stages, when the patients
need dialysis or even kidney transplantation [3].
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Urea is the major nitrogen metabolite found in the serum
and is derived from the degradation of proteins. About 90% of
urea is excreted by the kidneys into urine and 10 % through
the gastrointestinal tract and the skin [1]. Of the urea excreted
by the kidneys approximately 75% corresponds to nonprotein
nitrogen [1, 6]. Altered values of urea, measured together with
the creatinine, may indicate altered renal function [6].

Serum creatinine provides important information with
which to evaluate renal function by estimating the GFR [1,
7]. Being completely excreted, it is used as a useful marker of
renal function, particularly of the GFR, because it is indepen-
dent of factors such as the degree of hydration and protein
metabolism. In contrast, the values of creatinine are easily
affected by factors such as age, sex, diet, drugs, and the bio-
chemical method used in the assay. The creatinine concentra-
tion alone is thus used neither to assess the GFR nor to detect
the presence of CKD, with clinical examination being an im-
portant component of the conclusive diagnosis [1, 7].

The quantitative assessment of urea and creatinine
characterizes its clinical importance in supporting the di-
agnosis of renal impairment [6]. One of the major require-
ments for clinical analysis is a simple and accurate meth-
od for quantifying biochemical parameters such as urea
and creatinine in the serum, minimally or noninvasively,
directly in the fluid without the need for reagents.
Physicochemical analytical methods such as infrared
spectroscopy [8], nuclear magnetic resonance spectrosco-
py [9], and Raman spectroscopy [10–15] are being devel-
oped to measure the blood, plasma, or serum components
with greater precision. The development of optical
methods may bring advantages because they do not rely
on chemical reactions or enzymatic analysis, allowing
real-time assessment and with minimal, waste-free sample
preparation [14].

Raman spectroscopy (RS) emerged as a tool to analyze the
molecular components of different bio-tissues [16]. It surpasses
the conventional techniques for the preservation of the sample,
without the need for chemical reagents, reduced time of analy-
sis even in low concentrations, and in the presence of interfering
agent or solvents [16–18]. Due to its vibrational nature, the very
narrow bands that characterize the Raman scattering correspond
to the vibrations of molecular chemical bonds at different ener-
gy levels present in the sample [16, 19]. By using RS, it is
possible to acquire important information about the chemical
composition of the samples, a molecular “fingerprint,” allowing
the identification of the biochemical components responsible
for the pathological changes [16]. Modern dispersive Raman
spectrometers employ near-infrared excitation (785 and
830 nm), high-resolution imaging spectrographs, and deep-
cooled CCD cameras for a spectrum with lower induced fluo-
rescence background and have been successfully applied in the
characterization of biological tissues and fluids, both in vitro
and in vivo in different pathologies [12, 20–22].

The RS technique is under investigation for the quantifica-
tion of analytes in serum such as glucose, total protein, urea,
and creatinine [11, 13, 14]. An appropriate model based on the
Raman bands can assay serum components urea, creatinine,
glucose, cholesterol, triglyceride, total protein, albumin, he-
moglobin, and bilirubin based on concentrations previously
determined by conventional methods [23]. Studies applying
RS in serum analysis have indicated the possibility of quanti-
fication of uric acid and the differentiation between HDL and
LDL cholesterol [14]. The spectroscopic analysis of serum
also allows the identification of pathological states, such as
spectral differentiation via diagnostic models between healthy
human serum and serum infected with the hepatitis C virus
(HCV) [24] and the spectral discrimination of serum via the
“surface-enhanced Raman spectroscopy” (SERS) technique
employing hexagonal silver nanoparticles in the sera of pa-
tients with benign diseases, stomach, and colorectal cancer, as
a rapid technique for monitoring cancer [25].

Due to the multivariate nature of the data obtained by RS,
multivariate statistical methods such as the partial least
squares technique (PLS) favor a quantitative assessment of
the data, by correlating various information from the spectrum
with changes in the concentration of the sample’s biochemical
elements, allowing the analysis of data even in the presence of
interfering agents [13, 23]. These methods consider all rele-
vant spectral information and ignore that noncorrelated with
the concentration of analytes of interest, remaining unchanged
even with the inclusion of new samples [13]. The evaluation
of Raman data using the PLS method has been used to mea-
sure blood analytes such as glucose, cholesterol, triglycerides,
creatinine, urea, total protein, albumin, and hemoglobin
[11–14, 23]. Principal components analysis (PCA), another
multivariate technique, has been used in spectroscopy for clas-
sification and group discrimination [22, 24]. PCA is capable
of reducing the dimensionality of the dataset by linearly
transforming an m-dimensional space on a d-dimensional
space (where d<m) based on the covariance of the data.
The coordinates of the data in this new space are not correlat-
ed, and since they are obtained through covariance, the first
variables, or principal components, preserve the greatest
amount of variance within the original data [26]. PCA aims
to obtain the variability of the spectral characteristic of a given
material, based on repeating the experiment with different
samples of the material under different conditions (in this case,
data from normal and dialysis subjects). The differences be-
tween the groups (if any) appear in the first principal compo-
nents. Discrimination is then achieved by correlating the prin-
cipal components with known morphological or biochemical
differences in the groups. PCA has been used to correlate
pathological status and alterations in the principal components
scores and vectors extracted from the Raman spectra of human
urine [22], hemoglobin [27], skin in vitro [28] and in vivo [29,
30], breast [31], among other tissues.
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This study evaluates the Raman technique as a methodol-
ogy for accurately quantifying the concentrations of urea and
creatinine in human serum with a unique spectral measure. To
this end, we have developed a quantification model to esti-
mate the concentrations of urea and creatinine in serum sam-
ples based on the PLS multivariate technique applied to the
Raman spectra of serum. In order to develop the PLS model,
the concentrations of urea and creatinine were assessed, re-
spectively, by kinetic-spectrophotometric and enzymatic-
spectrophotometric methods, commonly used in the estima-
tion of urea and creatinine. The Raman spectra were also
employed in a model to discriminate serum samples from
two groups, normal healthy control volunteers, and those un-
dergoing hemodialysis, based on PCA searching for a method
of discrimination for patients with possible renal failure based
on the Raman features.

Materials and methods

This study was developed with the approval of the Committee
for Ethics and Research at University Camilo Castelo Branco
under no. CAAE 19690113.3.0000.5494.

Serum samples Fifty-five serum samples from clinically
healthy subjects (37 women and 18 men, average age of
32.6 years—group 1), employees of the Celso Matos
Laboratory, Santarém, PA, Brazil, and 47 predialysis serum
samples of patients with chronic renal disease (32 women and
15 men, average age of 40.5 years—Group 2) from the
Hemodialysis Center of the Municipal Hospital of Santarém,
PA, Brazil, were obtained. Inclusion criteria were individuals
with ages from 18 to 65 years, without a history of preexisting
renal problems (group 1), and patients with chronic renal fail-
ure undergoing hemodialysis (group 2). Exclusion criteria
were a history of complications or suspected renal impair-
ment, except for those on hemodialysis, hypertension,
cachexy, and diabetic patients with signs of pyelonephritis.
No patient was previously diagnosed with cancer, heart, liver,
degenerative, or infectious diseases. In the group 2, 27 sub-
jects were diabetics and 32 subjects were hypertensive.

Samples corresponding to 10 mL of blood were collected
from each volunteer in a dry tube without anticoagulant,
stored in a plastic tube and sent to the laboratory for the bio-
chemical assay. Sera were preprocessed by centrifugation at
5000 rpm, yielding approximately 5 mL of serum from each
patient, which was used to determine the concentration of urea
and creatinine using automated biochemistry equipment
(model A-15, Biosystems S/A, Barcelona, Spain). After the
biochemical measurement, the samples were frozen at −70 °C
and stored for further Raman spectral analysis.

Serum urea was determined using the enzyme-
spectrophotometric method, which has a reference (normal)

range between 15 and 39 mg/dL, with detection limit of
2.5 mg/dL, linearity limit of 300 mg/dL, repeatability of
3.3 %, and reproducibility of 4.3 %, both at concentration of
42 mg/dL [32]. Serum creatinine was determined by modified
Jaffe’s spectrophotometric kinetic alkaline picrate method
(picric acid solution 25 mmol/L and sodium hydroxide
0.4 mol/L), based on the reaction of the picrate with the serum
creatinine in alkaline medium, forming a chromogen whose
speed of formation, obtained in two kinetic points, is propor-
tional to the concentration of creatinine [33]. With the use of
this modified Jaffe method, the kit’s manufacturer assures ex-
cellent correlation (r=0.99) with the enzymatic method based
on 66 standard samples. The creatinine test has reference
values of 0.5–0.9 mg/dL for women and 0.7–1.2 for men, with
linear measurement interval between 0.2 and 15 mg/dL, re-
peatability of 1.3% and reproducibility of 3.6 %, both at lower
concentrations of about 0.6 mg/dL [33].

Due to possible interferences of serum compounds in the
J a f f e ’s r e a c t i o n , s amp l e s f r om sub j e c t s w i t h
hyperbilirubinemia and hyperlipidemia were excluded.

Raman spectroscopy Spectral data was collected through a
dispersive Raman spectrometer (model Dimension P-1,
Lambda Solutions, Inc., MA, USA) as described elsewhere
[34]. The spectrometer is composed of a laser diode (830 nm,
350 mW) for excitation, a f# 1.8 spectrometer with diffraction
grating with 1200 lines/mm, providing a resolution of about
2 cm−1 in the spectral range of 400 to 1800 cm−1, and a CCD
camera (back thinned, deep-depletion, 1340 × 100 pixels,
Peltier-cooled down to −75 °C). The excitation of the sample
and collection of the Raman signal were performed by means
of a “Raman probe” fiber optic cable (model Vector Raman
probe, Lambda Solutions, Inc., MA, USA). The spectral
changes of biological samples could thus be accessed via op-
tical fiber, with repeatability of the geometry of excitation and
signal collection [34]. Laser power at the probe output was
measured as 250 mW.

The acquisition and storage of spectra were performed via a
Windows-based microcomputer using the proprietary
RamanSoft software (version 1.4, Lambda Solutions, Inc.,
MA, USA), which controls (via USB connection) the expo-
sure time of the detector and the number of acquisitions per
sample, and storage spectra for further analysis. The total ex-
posure time for each spectrum was 30 s (3 s, 10 accumula-
tions). The calibration of the spectrometer was checked prior
to data collection; the Raman bands used were the main bands
of naphthalene, since this compound has characteristic, in-
tense, and well-spaced bands in the spectral region of 500 to
1700 cm−1.

At the time of spectroscopic evaluation, the serum samples
of normal subjects and dialysis patients were transported un-
der dry ice, passively unfrozen, and subjected to Raman spec-
troscopy. Eighty microliters of each sample was pipetted into a
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sample holder made of aluminumwith holes, and spectra were
recorded by means of the Raman probe, with the excitation
and collection extremity placed 10 mm apart from the sample
surface. Spectra were then stored and subjected to preprocess-
ing, consisting of the removal of background fluorescence by
applying a polynomial function of seventh order using Matlab
6.0 software and the manual removal of remnant cosmic rays
spikes. After that, the spectra were normalized by the intensity
of the H2O band of serum proteins in 1660 cm−1.

Quantification model based on PLS A multivariate regres-
sion model based on PLS was developed using the relevant
spectral information extracted from the Raman spectra for
predicting the concentrations of urea and creatinine from the
concentrations obtained via the biochemical method. The PLS
routine employed the leave-one-out cross-validation ap-
proach, where a sample is left out of the model and the con-
centration of this sample is estimated by modeling using the
remnant n-1 samples with a number of latent variables [35,
36]. The process is repeated n times for predicting the concen-
trations of all samples. The number of latent variables to be
included in the model was chosen from those with the lowest
error of cross-validation for all the left-out samples. By plot-
ting the biochemical concentration versus the predicted one,
the correlation coefficient (r) and the root mean square error of
cross-validation (RMSECV) of the model for the dataset are
calculated, which is used to estimate the assessing prediction
error in the calibration model, expressed by the equation [37]:

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X n

i¼1
conc−predi−conc−ref ið Þ2

n

s

where conc_pred and conc_ref are, respectively, the con-
centration values predicted by the model and the reference
values for the concentration of urea and creatinine analytes,
and n is the number of samples in the regression model [37].

Outliers can distort the results and the accuracy of a regres-
sion curve. A criterion that is commonly used to detect outliers
in a regression is based on the Cook’s distance (CD) [38]. The
CD evaluates the influence that the exclusion of a certain
outlier i can have on regression parameters such as the root
mean square error (RMSE) of the regression and r. Given the
regression of an estimated y based on the estimator x using the
dataset [(x1 y1), (x2 y2), …, (xn yn)], the Cook’s distance of
the observation i is calculated by the equation [38]:

CDi ¼
X n

j¼1
ŷ j−ŷ j ið Þ

� �2

p⋅RMSE2

where ŷ is the average value of the predicted values obtain-
ed by regression, ŷ(i) is the average value of the predicted
values after removing the ith observation (the outlier), and p

is the number of coefficients of the regression model.
Intuitively, CD is the normalized measure of the influence of
a certain data point i in the predicted average values. The
criterion for a value to be considered an outlier is DC≥4/n
[38]. The Cook’s distance was applied to the data to determine
possible outliers in the regressions obtained by the PLS
models of urea and creatinine. The quantitative model was
developed using the software Matlab 6.0, PLS toolbox.

Discrimination based on PCA PCAwas applied to the spec-
tra in order to determine spectral variables that could be used
to discriminate normal and dialysis groups, and the principal
components that provided the greatest differences between the
two groups, tested by t test (5 % significance level), were used
in a discrimination model to separate the data set into two
classes (normal and dialysis) based on the Euclidean distance
[39], calculated using the software Matlab 6.0, Statistics
toolbox.

Results

The mean Raman spectra of the serum of normal and dialysis
patients are presented in Fig. 1. The serum spectrum is dom-
inated by peaks related to serum proteins (mainly albumin), as
per the major peaks assigned in recent literature [40–42]. The
compounds of interest, urea and creatinine, present peaks at
1004 cm−1 (urea) [42, 43] and 680 and 846 cm−1 (creatinine)
[42, 44]. These peaks, highlighted in Fig. 1, are overlapped by
the peaks of other serum components, and thus, it is not pos-
sible to clearly distinguish them.

PLS has been used to develop quantification models for
urea and creatinine, using the leave-one-out cross-validation
approach. These multivariate regression models aimed to find
a correlation between the concentrations of these serum

Fig. 1 Mean Raman spectra from serum of normal and dialysis
volunteers. The Raman peak positions of urea at 1004 cm−1 and
creatinine at 680 and 846 cm−1 (evidenced with dashed lines) are
overlapped with peaks of other compounds, especially proteins. Laser
parameters 830 nm, 250 mW at probe tip, resolution 2 cm−1, exposure
time 30 s
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compounds, obtained by biochemical methods, with the
Raman spectral features, modeled by PLS, giving the predict-
ed concentrations as outputs. The number of latent variables
for eachmodel was determined by the lowest RMSECV for the
left-out samples [35, 36]. It was found that four latent vari-
ables for urea and five for creatinine provided the lowest
RMSECV. These PLS quantitative models are presented in
Fig. 2. Correlation coefficients were r=0.97 for urea and
r=0.93 for creatinine. The RMSECV values were 17.6 mg/
dL for urea and 1.94 mg/dL for creatinine. The data presented
in Fig. 2 excluded the outliers determined by CD.

Despite the small spectral difference between normal and
dialysis groups, PCA has been used as a possibility for dis-
criminating the Raman spectra into normal and dialysis
groups. The PCA variables, called principal components 2
and 3 (PC2 and PC3), showed statistically significant differ-
ences between normal and dialysis groups (t test, p<0.05),
indicating that these variables (PC2 and PC3) could be effec-
tive in discriminating normal and dialysis groups. Figure 3
shows the binary plot of PC2 versus PC3 for normal and
dialysis groups and the discrimination line between the normal
and dialysis groups based on Euclidean distance. This ap-
proach could discriminate dialysis subjects from normal ones
with a sensitivity of 91 % (43 out of 47 dialysis subjects),
specificity of 98 % (55 out of 56 normal subjects), and overall
accuracy of 95 %. Figure 4 shows the PC2 versus the bio-
chemical concentrations of urea (Fig. 4a) and creatinine

(Fig. 4b) and the discrimination line between the groups based
on Euclidean distance. The differentiation of both samples
was evident either using both PC2 and PC3 or using PC2,
separating the spectra between normal and dialysis.

Discussion

The use of RS as an analytical tool for quantifying urea
and creatinine in human serum has advantages in reduced
run time, being reagent-free and an acceptable accuracy
for the monitoring and management of patients with risk

Fig. 2 Plot of the concentration
of urea and creatinine obtained by
the biochemical method versus
the concentrations predicted by
the PLS models using four latent
variables for urea and five for
creatinine. Gray shaded intervals
represent the range of the
reference values according to the
biochemical assay kit
manufacturers [37, 38]. Values of
r= 0.97 and 0.93 and
RMSECV= 17.6 and 1.94 mg/dL
for urea and creatinine,
respectively

Fig. 3 Binary plot of principal components PC2 versus PC3 and
discrimination line based on Euclidean distance between normal and
dialysis groups. Statistically significant differences between normal and
dialysis groups for both PC2 and PC3 (t test, p< 0.05)
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of renal failure, with high reliability. A diagnostic method
based on RS may contribute to reducing the cost to gov-
ernments of screening large populations, favoring the de-
tection and monitoring of patients with risk of renal
failure.

One of the markers of renal damage is the increased
creatinine in serum and urine [1–3, 6, 7]. The diagnostic
methods routinely used for the biochemical evaluation
of urea and crea t in ine are based on kine t i c -
spectrophotometric and enzyme-spectrophotometric mea-
surements [32, 33]. These photometric methods, partic-
ularly the kinetic, have limitations mainly due to limits
in the linearity and interferences related to pathologic
hyperpigmentation, sample turbidity, and the use of
drugs that interfere with the metabolism of the measured
substances. The RS has the potential to quantify blood
analytes in physiological concentrations for medical ap-
plications using multivariate technique PLS [13].
Interesting is the emerging application of RS for cancer
diagnosis based on spectral analysis of serum through
multivariate analysis PCA [45].

The spectra of normal subjects and those undergoing
dialysis exhibit very similar peak intensities and posi-
tions. The difference in the concentrations of substances
due to the nonsufficient filtration process in the kidney,

particularly urea and creatinine, may be detected by RS
and multivariate methods.

Cook’s distance revealed five outliers present in urea, all in
dialysis patients. It is interesting to observe that three samples
were outliers for both urea and creatinine. The occurrence of
these outliers may be due to a high noise level in the Raman
spectrum, which hinders the determination of spectral features
using the PLS model, as well as the presence of other serum
compounds that may interfere in both photometric and PLS
biochemical assays.

The intense peaks at 1006 cm−1 for urea and 680 and
846 cm−1 for creatinine are superimposed by peaks from other
components of serum, mainly proteins. Multivariate methods
such as PLS and PCA are capable of revealing spectral vari-
ations that are correlated with the biochemical concentrations
of urea and creatinine. The reliability of the PLS model de-
pends on the number of samples used in the model, accuracy
of the calibration procedure, spectrometer stability, and band
overlap in a multicomponent sample. Changes in variables
such as the laser power, sample position, and spectrograph
calibration may lead to spectral changes that can be improp-
erly modeled by the PLS. On the other hand, spectral changes
that are uncorrelated with the concentrations of the com-
pounds of interest, such as other intervening agents, are not
modeled [26]. In this study, the PLS model was developed

Fig. 4 PC2 versus concentrations
of urea (a) and creatinine (b) and
discrimination line based on
Euclidean distance between
normal and dialysis groups
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using 114 samples, which increases the robustness of the mod-
el, as it is able to determine the spectral variables most corre-
lated with changes in concentration of the analytes of interest.
Four latent variables for urea and five for creatinine have also
been employed in order to find the lowest cross-validation
error.

The employed colorimetric method has a reproducibility of
4.3 % at a concentration of 42 mg/dL for urea and reproduc-
ibility of <1.0 % at a concentration of 6.0 mg/dL for creatinine
[32, 33]. The PLS model using the Raman spectra of serum
presented a RMSECVof 17.6 mg/dL for urea and of 1.94 mg/
dL for creatinine. These values suggest that RS may be devel-
oped as a tool for the population screening of renal failure,
with an advantage of the fact that the quantitative analysis of
both variables can be obtained in a single measurement, re-
ducing the time necessary for examination. For serum samples
with both urea and creatinine in the normal range, these error
values are of concern, since the lower concentrations of these
compounds result in low Raman scattering and such spectral
features cannot be easily modeled by PLS.

Results obtained by Stosch et al. [46], where SERS
employing colloidal silver was used along with the multivar-
iate analysis, showed a standard deviation of less than 2 % for
the quantitative determination of creatinine in human serum in
preestablished dilutions. This reinforces the results presented
in this study, suggesting the potential of Raman as a test that
determines the concentrations of urea and creatinine in serum,
rapidly, with acceptable error, and without the need for re-
agents, thus reducing costs.

Discrimination of the normal and dialysis groups through
PC2 and PC3 scores demonstrated a high rate (95 % overall
accuracy). It revealed the presence of a normal subject in the
dialysis group, which was a case of altered serum assay with-
out clinical symptoms. This subject was found to be in the
stage preceding renal failure, where the clinical symptoms
are not present, and only laboratory analysis can detect the
risk of developing a renal lesion. This is an important finding
in the early detection of renal changes, because, even with
absent clinical symptoms, spectral discrimination is possible,
leading to earlier diagnosis, before irreversible damage occurs
and the patient requires dialysis.

The PLS quantitative method has a disadvantage in that the
strength and reliability of the model depend on a large number
of experimental measurements [26], which in some cases may
become difficult to obtain in clinical practice, where the iden-
tification of subjects with altered serology is more important
than the exact laboratory value. In these situations, discrimi-
natory assessment via PCA may be a very promising alterna-
tive through which to discriminate subjects with altered serol-
ogy. Used as screening method, Raman-based serological as-
say or discrimination would rapidly direct patients with abnor-
mal results for more specific exams with smaller errors, with-
out additional costs for nonaltered patients. For population

screening, the results of discrimination by PCA are
encouraging.

The estimated cost for a single colorimetric assay in Brazil
is around US$0.50 for the consumables used for routine test-
ing. Considering the high frequency in which these tests are
performed, the overall cost is high for many countries such as
in Brazil and the time and additional infrastructure needed
may not be disregarded. On the other hand, Raman-based
analysis would be an effective alternative to reduce the depen-
dence on these inputs primarily for remote and low resources
regions, as the modern Raman equipments are portable and
allows real-time analysis and consequently reducing the time
for the results.

Despite the method based on Jaffe’s reaction being the
routine for serum creatinine assay, it presents limitation due
to the reaction of the picrate with some serum compounds,
notably glucose, bilirubin, ascorbic acid, proteins including
hemoglobin, and kenotic bodies [47]. Most of the commercial
kits employ modifications in the Jaffe’s reaction to minimize
these interferences, mainly the bilirubin and proteins [47]. The
colorimetric kit used in this study presents no interference
from common serum compounds in the reference range
(ascorbic acid below 30 mg/dL, bilirubin below 4 mg/dL,
hemoglobin below 500 mg/dL, and triglycerides below
2000 mg/dL). Therefore, the possible interferences in the
Jaffe method caused by these compounds were minimized in
the present study. For the subjects in the group 2 (dialysis), the
presence of glucosuria in diabetic patients may lead to an
overestimation of the concentration of creatinine when glu-
cose is present, as demonstrated by Weykamp et al., in exper-
iments were glucose were added to serum samples [48].
Therefore, the correlation between the Raman spectra and
the biochemical method might be biased. It is important to
report the efforts to standardize the creatinine measurements
aiming improvement in the diagnosis of CKD, with appropri-
ate choice of assaymethods that are creatinine-specific such as
the enzymatic methods [48, 49]. This might improve the re-
sults in a Raman-based system for creatinine measurements,
raising the correlation and reducing the prediction error.

Conclusion

The quantitative analysis of human serum via the PLS multi-
variate model, using the Raman spectral variables and concen-
trations of urea and creatinine obtained by standard biochem-
ical methods, showed that the concentrations of these com-
pounds can be obtained using a single spectral measurement,
with an error of 17.6 mg/dL for urea and of 1.94 mg/dL for
creatinine. Discrimination based on PCA was also possible,
with the principal components PC2 and PC3 effective in dis-
criminating between normal and dialysis groups with a sensi-
tivity of 91 % and specificity of 98 %.
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